(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
sqr(0) → 0
sqr(s(x)) → +(sqr(x), s(double(x)))
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
sqr(s(x)) → s(+(sqr(x), double(x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
sqr(s(x)) →+ +(sqr(x), s(double(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
sqr(0') → 0'
sqr(s(x)) → +'(sqr(x), s(double(x)))
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
sqr(s(x)) → s(+'(sqr(x), double(x)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
sqr(0') → 0'
sqr(s(x)) → +'(sqr(x), s(double(x)))
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
sqr(s(x)) → s(+'(sqr(x), double(x)))
Types:
sqr :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sqr,
+',
doubleThey will be analysed ascendingly in the following order:
+' < sqr
double < sqr
(8) Obligation:
TRS:
Rules:
sqr(
0') →
0'sqr(
s(
x)) →
+'(
sqr(
x),
s(
double(
x)))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
sqr(
s(
x)) →
s(
+'(
sqr(
x),
double(
x)))
Types:
sqr :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
+', sqr, double
They will be analysed ascendingly in the following order:
+' < sqr
double < sqr
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s2_0(
a),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
+'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)
Induction Step:
+'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
sqr(
0') →
0'sqr(
s(
x)) →
+'(
sqr(
x),
s(
double(
x)))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
sqr(
s(
x)) →
s(
+'(
sqr(
x),
double(
x)))
Types:
sqr :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
double, sqr
They will be analysed ascendingly in the following order:
double < sqr
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
double(
gen_0':s2_0(
n457_0)) →
gen_0':s2_0(
*(
2,
n457_0)), rt ∈ Ω(1 + n457
0)
Induction Base:
double(gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
double(gen_0':s2_0(+(n457_0, 1))) →RΩ(1)
s(s(double(gen_0':s2_0(n457_0)))) →IH
s(s(gen_0':s2_0(*(2, c458_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
sqr(
0') →
0'sqr(
s(
x)) →
+'(
sqr(
x),
s(
double(
x)))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
sqr(
s(
x)) →
s(
+'(
sqr(
x),
double(
x)))
Types:
sqr :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n457_0)) → gen_0':s2_0(*(2, n457_0)), rt ∈ Ω(1 + n4570)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
sqr
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sqr(
gen_0':s2_0(
n693_0)) →
gen_0':s2_0(
*(
n693_0,
n693_0)), rt ∈ Ω(1 + n693
0 + n693
02)
Induction Base:
sqr(gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
sqr(gen_0':s2_0(+(n693_0, 1))) →RΩ(1)
+'(sqr(gen_0':s2_0(n693_0)), s(double(gen_0':s2_0(n693_0)))) →IH
+'(gen_0':s2_0(*(c694_0, c694_0)), s(double(gen_0':s2_0(n693_0)))) →LΩ(1 + n6930)
+'(gen_0':s2_0(*(n693_0, n693_0)), s(gen_0':s2_0(*(2, n693_0)))) →LΩ(2 + 2·n6930)
gen_0':s2_0(+(+(*(2, n693_0), 1), *(n693_0, n693_0)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
sqr(
0') →
0'sqr(
s(
x)) →
+'(
sqr(
x),
s(
double(
x)))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
sqr(
s(
x)) →
s(
+'(
sqr(
x),
double(
x)))
Types:
sqr :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n457_0)) → gen_0':s2_0(*(2, n457_0)), rt ∈ Ω(1 + n4570)
sqr(gen_0':s2_0(n693_0)) → gen_0':s2_0(*(n693_0, n693_0)), rt ∈ Ω(1 + n6930 + n69302)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
sqr(gen_0':s2_0(n693_0)) → gen_0':s2_0(*(n693_0, n693_0)), rt ∈ Ω(1 + n6930 + n69302)
(19) BOUNDS(n^2, INF)
(20) Obligation:
TRS:
Rules:
sqr(
0') →
0'sqr(
s(
x)) →
+'(
sqr(
x),
s(
double(
x)))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
sqr(
s(
x)) →
s(
+'(
sqr(
x),
double(
x)))
Types:
sqr :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n457_0)) → gen_0':s2_0(*(2, n457_0)), rt ∈ Ω(1 + n4570)
sqr(gen_0':s2_0(n693_0)) → gen_0':s2_0(*(n693_0, n693_0)), rt ∈ Ω(1 + n6930 + n69302)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
sqr(gen_0':s2_0(n693_0)) → gen_0':s2_0(*(n693_0, n693_0)), rt ∈ Ω(1 + n6930 + n69302)
(22) BOUNDS(n^2, INF)
(23) Obligation:
TRS:
Rules:
sqr(
0') →
0'sqr(
s(
x)) →
+'(
sqr(
x),
s(
double(
x)))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
sqr(
s(
x)) →
s(
+'(
sqr(
x),
double(
x)))
Types:
sqr :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n457_0)) → gen_0':s2_0(*(2, n457_0)), rt ∈ Ω(1 + n4570)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
sqr(
0') →
0'sqr(
s(
x)) →
+'(
sqr(
x),
s(
double(
x)))
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
sqr(
s(
x)) →
s(
+'(
sqr(
x),
double(
x)))
Types:
sqr :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
double :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(28) BOUNDS(n^1, INF)